Контрольні роботи з математичних дисциплін
українська русский  
Авторизація
 
Логін
Пароль
Приклади задач
Вища математика
Теорія ймовірностей
Матпрограмування
Економетрія
Теорія статистики
ЕMM і М, ДО
Вибране
Готові роботи
Рейтинг задач
Задачі on-line
Довідка
Ціни та оплата
Інші ресурси
Мапа сайту
Контакти
Є запитання?
Курси валют
 
Курсы валют на PROext     
Контрольна робота №1123

Теорія ймовірностей та математична статистика

Російський державний гуманітарний університет

Дата: 10.02.10, задач: 8, об'єм: 14 ст., вартість: 74 грн. Переглядів: 556

Виділити все

№1  Задача: 1123-3.1.  Теореми суми та добутку ймовірностей  Ціна: 
Вибір

Студент пришел на зачет, зная 24 вопроса из 30. Какова вероятность сдать зачет, если для получения зачета необходимо ответить на один вопрос, а преподаватель задает последовательно не более двух вопросов. 5.0 грн.
 
№2  Задача: 1123-3.2.  Повторення випробувань та формула Бернуллі  Ціна: 
Вибір

В среднем 10% заключенных в городе браков в течение года заканчиваются разводом. Какова вероятность того, что из четырех случайно отобранных пар, заключивших брак, в течение года: а) ни одна пара не разведется; б) разведутся не более двух пар. 5.0 грн.
 
№3  Задача: 1123-3.3.  Теореми Муавра-Лапласа та формула Пуассона  Ціна: 
Вибір

Вероятность того, что желание, загаданное на Новый год, сбудется, равна 0,7. Найти вероятность того, что из 200 загаданных желаний сбудется: а) ровно 140; б) от 120 до 150. 5.0 грн.
 
№4  Задача: 1123-3.4.  Розподіл дискретної випадкової величини  Ціна: 
Вибір

Дискретная случайная величина Х задана функцией распределения:

Найти:
а) ряд распределения случайной величины Х;
б) дисперсию D(Х);
в) вероятность P(3 < X < 7,5).
5.0 грн.
 
№5  Задача: 1123-3.5.  Закон великих чисел  Ціна: 
Вибір

Дневная выручка магазина является случайной величиной со средним значением 10000 руб. и средним квадратическим отклонением 2000 руб.
1) С помощью неравенства Чебышева оценить вероятность того, что дневная выручка будет находиться в пределах от 6000 до 14000 руб.
2) Найти вероятность того же события, учитывая, что дневная выручка магазина является случайной величиной, распределенной по нормальному закону.
3) Объяснить различие результатов.
6.0 грн.
 
№6  Задача: 1123-4.1.  Генеральна та вибіркові сукупності. Точкові оцінки  Ціна: 
Вибір

По схеме собственно-случайной бесповторной выборки проведено 10%-ное обследование предприятий одной из отраслей экономики в отчетном году. Результаты обследования представлены в таблице:
Выпуск продукции, млн.руб. Менее 30 30–40 40–50 50–60 60–70 70–80 80–90 Более 90 Итого
Число предприятий 6 9 19 29 21 9 5 2 100

Найти:
а) вероятность того, что средний размер выпуска продукции всех предприятий отличается от его среднего размера в выборке не более чем на 5 млн. руб. (по абсолютной величине);
б) границы, в которых с вероятностью 0,95 заключена доля предприятий, выпуск продукции которых менее 50 млн. руб.;
в) объем выборки, при которой те же границы для доли предприятий, полученные в пункте б), можно гарантировать с вероятностью 0,9876; дать ответ на тот же вопрос, если никаких предварительных данных о рассматриваемой доле нет.
14.5 грн.
 
№7  Задача: 1123-4.2.  Статистичні гіпотези, похибки, критерії перевірки гіпотез  Ціна: 
Вибір

По данным задачи 1, используя χ2-критерий Пирсона, при уровне значимости α = 0,05 проверить гипотезу о том, что случайная величина X – объем выпуска продукции – распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую. 10.0 грн.
 
№8  Задача: 1123-4.3.  Система двох випадкових величин. Умовні розподіли  Ціна: 
Вибір

Распределение 50 российских коммерческих банков по объему вложений в ценные бумаги X (тыс. руб.) и полученной прибыли Y (тыс. руб.) представлены в таблице:
x | y 100–120 120–140 140–160 160–180 180–200 200–220 Итого
1000–1300 4 2 1 - - - 7
1300–1600 2 4 2 2 - - 10
1600–1900 - 4 7 5 1 - 17
1900–2200 - - 3 4 1 2 10
2200–2500 - - - 1 3 2 6
Итого 6 10 13 12 5 4 50

Необходимо:
1) Вычислить групповые средние x и y и построить эмпирические линии регрессии.
2) Предполагая, что между переменными X и Y существует линейная корреляционная зависимость:
а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать содержательную интерпретацию полученных уравнений;
б) вычислить коэффициент корреляции, на уровне α = 0,05, оценить его достоверность и сделать вывод о тесноте и направлении связи между переменными X и Y;
в) используя соответствующее уравнение регрессии, оценить среднюю прибыль, полученную коммерческим банком, вложившим в ценные бумаги 1500 тыс. руб.
23.5 грн.
 
Виділити все



Дата: 10.02.10, задач: 8, об'єм: 14 ст., вартість: 74 грн. Переглядів: 556
  
  
Нові роботи

01.01.17
2500
Економетрія
КНЕУ

09.12.16
2488
Теорія ймовірностей та математична статистика
ЗНТУ

23.11.16
2475
Вища математика
УнУкр

05.10.16
2436
Теорія ймовірностей та математична статистика
РДГУ

03.11.16
2433
Економетрія
ОНЕУ

08.04.16
2393
Теорія статистики
ІПКСЗ

05.03.16
2380
Вища математика
НГА

22.02.16
2375
Математичне програмування
ОНЕУ

21.01.16
2360
Теорія ймовірностей та математична статистика
АОСА

Design:
ru.AnVisionWebTemplates.com

©2005-16 MatComUA

 
Головна || Реєстрація || Замовлення || Реферати || Запитання || Відгуки || Мапа || Про нас UKR | RUS